Wednesday, November 12, 2008


Most applications need data access at one point of time making it a crucial component when working with applications. Data access is making the application interact with a database, where all the data is stored. Different applications have different requirements for database access. VB .NET uses ADO .NET (Active X Data Object) as it's data access and manipulation protocol which also enables us to work with data on the Internet. Let's take a look why ADO .NET came into picture replacing ADO.

Evolution of ADO.NET

The first data access model, DAO (data access model) was created for local databases with the built-in Jet engine which had performance and functionality issues. Next came RDO (Remote Data Object) and ADO (Active Data Object) which were designed for Client Server architectures but soon ADO took over RDO. ADO was a good architecture but as the language changes so is the technology. With ADO, all the data is contained in a recordset object which had problems when implemented on the network and penetrating firewalls. ADO was a connected data access, which means that when a connection to the database is established the connection remains open until the application is closed. Leaving the connection open for the lifetime of the application raises concerns about database security and network traffic. Also, as databases are becoming increasingly important and as they are serving more people, a connected data access model makes us think about its productivity. For example, an application with connected data access may do well when connected to two clients, the same may do poorly when connected to 10 and might be unusable when connected to 100 or more. Also, open database connections use system resources to a maximum extent making the system performance less effective.


To cope up with some of the problems mentioned above, ADO .NET came into existence. ADO .NET addresses the above mentioned problems by maintaining a disconnected database access model which means, when an application interacts with the database, the connection is opened to serve the request of the application and is closed as soon as the request is completed. Likewise, if a database is Updated, the connection is opened long enough to complete the Update operation and is closed. By keeping connections open for only a minimum period of time, ADO .NET conserves system resources and provides maximum security for databases and also has less impact on system performance. Also, ADO .NET when interacting with the database uses XML and converts all the data into XML format for database related operations making them more efficient.

The ADO.NET Data Architecture

Data Access in ADO.NET relies on two components: DataSet and Data Provider.


The dataset is a disconnected, in-memory representation of data. It can be considered as a local copy of the relevant portions of the database. The DataSet is persisted in memory and the data in it can be manipulated and updated independent of the database. When the use of this DataSet is finished, changes can be made back to the central database for updating. The data in DataSet can be loaded from any valid data source like Microsoft SQL server database, an Oracle database or from a Microsoft Access database.

Data Provider

The Data Provider is responsible for providing and maintaining the connection to the database. A DataProvider is a set of related components that work together to provide data in an efficient and performance driven manner. The .NET Framework currently comes with two DataProviders: the SQL Data Provider which is designed only to work with Microsoft's SQL Server 7.0 or later and the OleDb DataProvider which allows us to connect to other types of databases like Access and Oracle. Each DataProvider consists of the following component classes:

The Connection object which provides a connection to the database
Command object which is used to execute a command
DataReader object which provides a forward-only, read only, connected recordset
DataAdapter object which populates a disconnected DataSet with data and performs update

Data access with ADO.NET can be summarized as follows:

A connection object establishes the connection for the application with the database. The command object provides direct execution of the command to the database. If the command returns more than a single value, the command object returns a DataReader to provide the data. Alternatively, the DataAdapter can be used to fill the Dataset object. The database can be updated using the command object or the DataAdapter.

ADO .NET Data Architecture

Component classes that make up the Data Providers

The Connection Object

The Connection object creates the connection to the database. Microsoft Visual Studio .NET provides two types of Connection classes: the SqlConnection object, which is designed specifically to connect to Microsoft SQL Server 7.0 or later, and the OleDbConnection object, which can provide connections to a wide range of database types like Microsoft Access and Oracle. The Connection object contains all of the information required to open a connection to the database.

The Command Object

The Command object is represented by two corresponding classes: SqlCommand and OleDbCommand. Command objects are used to execute commands to a database across a data connection. The Command objects can be used to execute stored procedures on the database, SQL commands, or return complete tables directly. Command objects provide three methods that are used to execute commands on the database:

ExecuteNonQuery: Executes commands that have no return values such as INSERT, UPDATE or DELETE
ExecuteScalar: Returns a single value from a database query
ExecuteReader: Returns a result set by way of a DataReader object

The DataReader Object

The DataReader object provides a forward-only, read-only, connected stream recordset from a database. Unlike other components of the Data Provider, DataReader objects cannot be directly instantiated. Rather, the DataReader is returned as the result of the Command object's ExecuteReader method. The SqlCommand.ExecuteReader method returns a SqlDataReader object, and the OleDbCommand.ExecuteReader method returns an OleDbDataReader object. The DataReader can provide rows of data directly to application logic when you do not need to keep the data cached in memory. Because only one row is in memory at a time, the DataReader provides the lowest overhead in terms of system performance but requires the exclusive use of an open Connection object for the lifetime of the DataReader.

The DataAdapter Object

The DataAdapter is the class at the core of ADO .NET's disconnected data access. It is essentially the middleman facilitating all communication between the database and a DataSet. The DataAdapter is used either to fill a DataTable or DataSet with data from the database with it's Fill method. After the memory-resident data has been manipulated, the DataAdapter can commit the changes to the database by calling the Update method. The DataAdapter provides four properties that represent database commands:


When the Update method is called, changes in the DataSet are copied back to the database and the appropriate InsertCommand, DeleteCommand, or UpdateCommand is executed.

OOP with VB

OOP Basics

Visual Basic was Object-Based, Visual Basic .NET is Object-Oriented, which means that it's a true Object-Oriented Programming Language. Visual Basic .NET supports all the key OOP features like Polymorphism, Inheritance, Abstraction and Encapsulation. It's worth having a brief overview of OOP before starting OOP with VB.

Why Object Oriented approach?

A major factor in the invention of Object-Oriented approach is to remove some of the flaws encountered with the procedural approach. In OOP, data is treated as a critical element and does not allow it to flow freely. It bounds data closely to the functions that operate on it and protects it from accidental modification from outside functions. OOP allows decomposition of a problem into a number of entities called objects and then builds data and functions around these objects. A major advantage of OOP is code reusability.

Some important features of Object Oriented programming are as follows:

  • Emphasis on data rather than procedure
  • Programs are divided into Objects
  • Data is hidden and cannot be accessed by external functions
  • Objects can communicate with each other through functions
  • New data and functions can be easily added whenever necessary
  • Follows bottom-up approach

Concepts of OOP:

  • Objects
  • Classes
  • Data Abstraction and Encapsulation
  • Inheritance
  • Polymorphism

Briefly on Concepts:


Objects are the basic run-time entities in an object-oriented system. Programming problem is analyzed in terms of objects and nature of communication between them. When a program is executed, objects interact with each other by sending messages. Different objects can also interact with each other without knowing the details of their data or code.


A class is a collection of objects of similar type. Once a class is defined, any number of objects can be created which belong to that class.

Data Abstraction and Encapsulation

Abstraction refers to the act of representing essential features without including the background details or explanations. Classes use the concept of abstraction and are defined as a list of abstract attributes.

Storing data and functions in a single unit (class) is encapsulation. Data cannot be accessible to the outside world and only those functions which are stored in the class can access it.


Inheritance is the process by which objects can acquire the properties of objects of other class. In OOP, inheritance provides reusability, like, adding additional features to an existing class without modifying it. This is achieved by deriving a new class from the existing one. The new class will have combined features of both the classes.


Polymorphism means the ability to take more than one form. An operation may exhibit different behaviors in different instances. The behavior depends on the data types used in the operation. Polymorphism is extensively used in implementing Inheritance.

Advantages of OOP

Object-Oriented Programming has the following advantages over conventional approaches:

  • OOP provides a clear modular structure for programs which makes it good for defining abstract datatypes where implementation details are hidden and the unit has a clearly defined interface.
  • OOP makes it easy to maintain and modify existing code as new objects can be created with small differences to existing ones.
  • OOP provides a good framework for code libraries where supplied software components can be easily adapted and modified by the programmer. This is particularly useful for developing graphical user interfaces.

No comments:


My Blog List